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Overview

Objective: understand PyTorch under-the-hood and train a simple network



What makes frameworks different than regular libraries?

“A framework embodies some abstract design, with more behavior built in. In 
order to use it you need to insert your behavior into various places in the 
framework either by subclassing or by plugging in your own classes. The 
framework's code then calls your code at these points” - Martin Fowler

PyTorch is an object-oriented framework that automates key parts of ML, while 
handing the following under the hood:

● Automatic gradient computation via torch.autograd
● Allocating memory and performing computations on accelerator hardware 

… along with implementations of common layers, losses, optimizers, and others!

PyTorch is a machine learning (ML) framework built by FAIR
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What is PyTorch?
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A landscape of deep learning frameworks

Graphic from Pan Lu (ECE C147, 2022)



An N-dimensional array with a homogenous data type, basically a beefed-up Numpy 
array with the advantages:

● Can run on hardware accelerators, e.g., GPU, TPU, MPS
● Can track and store gradients in addition to values

Otherwise similar (but not identical!) syntax, usage, etc.

Central data structure in PyTorch
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PyTorch basics: tensors

Graphic from Pan Lu (ECE C147, 2022)



● Automatic differentiation (autodiff): a general way of constructing a procedure 
for computing derivatives of some value output by some function

● Backpropagation (backprop): reverse-mode autodiff applied to neural networks
● Autograd: one of the first libraries for autodiff, other versions (many with the 

same name) implemented in other frameworks

Some basic terminology
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PyTorch basics: torch.autograd



Use the multivariate chain rule to compute the partial derivatives
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Naïve gradient computation

Example from Richard Zemel (COMS W4995, Fall 2021)

Notation: overbar is 
the partial derivative 
of L_reg w.r.t. the 
variable: in the red 
box, we see the 
partial w.r.t. y is the 
partial of L_reg 
w.r.t. L multiplied 
with the partial of L 
w.r.t. y, i.e. the 
chain rule!



Store pre-specified routines for derivatives of primitive functions - derivatives of 
complex functions will just be sums and/or products of these!
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Automating gradient computations

Example from Richard Zemel (COMS W4995, Fall 2021)



Consider a simple multi-layer perceptron (MLP) with 3 hidden units

Vectorized variables allow us to use matrix calculus for fast parallel computing
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Moving from single variables to vectors

In single units, the hidden 
layer z looks like this →

Unit-wise backward pass would be:

Vectorized as:                        where the partial is the Jacobian

Also known as the vector-Jacobian product (VJP)



Naive implementation breaks modularity, since a function to compute the gradient of z 
needs to know who its children are and how it is used in the expressions for r and s 

Keeping backpropagation modular
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Backprop as message passing

In autodiff, each node just sums incoming 
partials from its children, then passes its 
own messages to its parents, where each 
message contains the arguments needed to 
compute the VJP

Nodes don’t need to know from where 
the incoming messages came



1. Create the evaluation graph from primitives of all the modules
2. Forward pass to evaluate the functions at input values

a. During the forward pass, also save the input values and the functions to 
compute partial derivatives

3. Start the reverse pass with dL = 1
4. Pass dL backwards to all parent nodes
5. Parent nodes compute the partials using stored inputs and functions, then 

multiply them with the messages received from their children
a. If there is a fan-out (a node has more than one child), sum those VJPs 

together according to the chain rule

Then, the optimizer (e.g., Adam, RMSProp, Adagrad, SGD, etc.) updates all learnable 
parameters with some function of their computed gradients w.r.t. the loss

Putting it all together
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Reverse-mode auto-differentiation



Consider the simple 3-layer network below:

● Forward mode: we have the inputs and the pre-stored 
derivatives - can explicitly compute the Jacobians during the 
forward pass and multiply them as we go, starting with w0= x

● Reverse mode: same but do it in reverse, starting with w3 = y: 

What’s the difference?
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Forward vs. reverse-mode autodiff

Example from Wikipedia article on automatic differentiation



According to the chain rule, we need to multiply the Jacobians of all 
the sub-operations anyway

● Matrix multiplication is not commutative, but it is associative

Why does PyTorch use reverse-mode autodiff?
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Why reverse-mode?

Example from this excellent StackOverflow answer

In NNDL, y is 
usually a scalar 
loss, i.e. |y| = 1# of operations:

Forward Reverse

The direction can save us some compute!

https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be


You (probably) won’t need to worry about these details in day-to-day - key takeaways:

● PyTorch and other ML frameworks provide reverse-mode autodiff engines
● Autodiff works iteratively, different than naïve gradient computations by hand
● Uses matrix/vector calculus instead of single variables to allow massively 

parallel computation
● Incorporates several design choices to try to minimize memory/computation 

complexity
● Follows good OOP design to keep computation graphs modular

Just need to understand the basic ideas
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Takeaways
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What does this look like in code?
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● Test data should never be encountered, used, or referenced in any shape or 
form during training - this includes checking accuracies for early stopping!
○ Instead, use a validation set to do this

● Standardizing across input variables can speed up training and stabilize gradient 
updates (even though this can be learned by weights and biases)

● Classes should be balanced, otherwise networks can collapse to a trivial 
solution of just predicting the dominant class in the training data

● Look at your data!
○ Do exploratory analysis, plot and visualize samples, distributions, etc.
○ Print intermediate results and analyze them
○ Even if your code runs smoothly, that doesn’t mean that everything is 

working correctly
○ Make sure things make sense!

Best practices for data

Data quality and quantity is arguably the main driver of DL progress
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● PyTorch accumulates gradients over multiple backwards calls, so it is important 
to call torch.zero_grad() to reset the gradients after each batch (if so desired)

● The computation graph will automatically add any new computations/data
○ If you don’t want this (e.g., when computing validation scores), use the 

context manager with torch.no_grad()
● Try overfitting one batch of data to make sure that your network is learning
● Make sure to check documentation often - e.g., some losses may expect raw 

logits instead of softmaxed inputs
● Make sure to correctly set train() or eval() when switching between training and 

inference
● There are many ways to manipulate the shape of a Tensor - be clear about what 

they do - e.g., moving the underlying data vs. simply providing an alternate view 
of the same data

Tips, tricks, and common mistakes



Q&A
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Thanks for listening! Feel free to email me with any questions: 
johnzhou (at) ucla.edu


