
Introduction to PyTorch
2/26/2024

Department of Electrical and Computer Engineering
Neuroscience Interdepartmental Program

John Zhou

1. What is PyTorch?
2. PyTorch basics

a. Tensors
b. Autograd

3. A simple example network
a. Layers and modules
b. Losses
c. Optimizers
d. Data loading

4. Data handling
5. Implementation tips and common mistakes

2

Overview

Objective: understand PyTorch under-the-hood and train a simple network

What makes frameworks different than regular libraries?

“A framework embodies some abstract design, with more behavior built in. In
order to use it you need to insert your behavior into various places in the
framework either by subclassing or by plugging in your own classes. The
framework's code then calls your code at these points” - Martin Fowler

PyTorch is an object-oriented framework that automates key parts of ML, while
handing the following under the hood:

● Automatic gradient computation via torch.autograd
● Allocating memory and performing computations on accelerator hardware

… along with implementations of common layers, losses, optimizers, and others!

PyTorch is a machine learning (ML) framework built by FAIR

3

What is PyTorch?

4

A landscape of deep learning frameworks

Graphic from Pan Lu (ECE C147, 2022)

An N-dimensional array with a homogenous data type, basically a beefed-up Numpy
array with the advantages:

● Can run on hardware accelerators, e.g., GPU, TPU, MPS
● Can track and store gradients in addition to values

Otherwise similar (but not identical!) syntax, usage, etc.

Central data structure in PyTorch

5

PyTorch basics: tensors

Graphic from Pan Lu (ECE C147, 2022)

● Automatic differentiation (autodiff): a general way of constructing a procedure
for computing derivatives of some value output by some function

● Backpropagation (backprop): reverse-mode autodiff applied to neural networks
● Autograd: one of the first libraries for autodiff, other versions (many with the

same name) implemented in other frameworks

Some basic terminology

6

PyTorch basics: torch.autograd

Use the multivariate chain rule to compute the partial derivatives

7

Naïve gradient computation

Example from Richard Zemel (COMS W4995, Fall 2021)

Notation: overbar is
the partial derivative
of L_reg w.r.t. the
variable: in the red
box, we see the
partial w.r.t. y is the
partial of L_reg
w.r.t. L multiplied
with the partial of L
w.r.t. y, i.e. the
chain rule!

Store pre-specified routines for derivatives of primitive functions - derivatives of
complex functions will just be sums and/or products of these!

8

Automating gradient computations

Example from Richard Zemel (COMS W4995, Fall 2021)

Consider a simple multi-layer perceptron (MLP) with 3 hidden units

Vectorized variables allow us to use matrix calculus for fast parallel computing

9

Moving from single variables to vectors

In single units, the hidden
layer z looks like this →

Unit-wise backward pass would be:

Vectorized as: where the partial is the Jacobian

Also known as the vector-Jacobian product (VJP)

Naive implementation breaks modularity, since a function to compute the gradient of z
needs to know who its children are and how it is used in the expressions for r and s

Keeping backpropagation modular

10

Backprop as message passing

In autodiff, each node just sums incoming
partials from its children, then passes its
own messages to its parents, where each
message contains the arguments needed to
compute the VJP

Nodes don’t need to know from where
the incoming messages came

1. Create the evaluation graph from primitives of all the modules
2. Forward pass to evaluate the functions at input values

a. During the forward pass, also save the input values and the functions to
compute partial derivatives

3. Start the reverse pass with dL = 1
4. Pass dL backwards to all parent nodes
5. Parent nodes compute the partials using stored inputs and functions, then

multiply them with the messages received from their children
a. If there is a fan-out (a node has more than one child), sum those VJPs

together according to the chain rule

Then, the optimizer (e.g., Adam, RMSProp, Adagrad, SGD, etc.) updates all learnable
parameters with some function of their computed gradients w.r.t. the loss

Putting it all together

11

Reverse-mode auto-differentiation

Consider the simple 3-layer network below:

● Forward mode: we have the inputs and the pre-stored
derivatives - can explicitly compute the Jacobians during the
forward pass and multiply them as we go, starting with w0= x

● Reverse mode: same but do it in reverse, starting with w3 = y:

What’s the difference?

12

Forward vs. reverse-mode autodiff

Example from Wikipedia article on automatic differentiation

According to the chain rule, we need to multiply the Jacobians of all
the sub-operations anyway

● Matrix multiplication is not commutative, but it is associative

Why does PyTorch use reverse-mode autodiff?

13

Why reverse-mode?

Example from this excellent StackOverflow answer

In NNDL, y is
usually a scalar
loss, i.e. |y| = 1# of operations:

Forward Reverse

The direction can save us some compute!

https://math.stackexchange.com/questions/2195377/reverse-mode-differentiation-vs-forward-mode-differentiation-where-are-the-be

You (probably) won’t need to worry about these details in day-to-day - key takeaways:

● PyTorch and other ML frameworks provide reverse-mode autodiff engines
● Autodiff works iteratively, different than naïve gradient computations by hand
● Uses matrix/vector calculus instead of single variables to allow massively

parallel computation
● Incorporates several design choices to try to minimize memory/computation

complexity
● Follows good OOP design to keep computation graphs modular

Just need to understand the basic ideas

14

Takeaways

15

What does this look like in code?

16

● Test data should never be encountered, used, or referenced in any shape or
form during training - this includes checking accuracies for early stopping!
○ Instead, use a validation set to do this

● Standardizing across input variables can speed up training and stabilize gradient
updates (even though this can be learned by weights and biases)

● Classes should be balanced, otherwise networks can collapse to a trivial
solution of just predicting the dominant class in the training data

● Look at your data!
○ Do exploratory analysis, plot and visualize samples, distributions, etc.
○ Print intermediate results and analyze them
○ Even if your code runs smoothly, that doesn’t mean that everything is

working correctly
○ Make sure things make sense!

Best practices for data

Data quality and quantity is arguably the main driver of DL progress

17

● PyTorch accumulates gradients over multiple backwards calls, so it is important
to call torch.zero_grad() to reset the gradients after each batch (if so desired)

● The computation graph will automatically add any new computations/data
○ If you don’t want this (e.g., when computing validation scores), use the

context manager with torch.no_grad()
● Try overfitting one batch of data to make sure that your network is learning
● Make sure to check documentation often - e.g., some losses may expect raw

logits instead of softmaxed inputs
● Make sure to correctly set train() or eval() when switching between training and

inference
● There are many ways to manipulate the shape of a Tensor - be clear about what

they do - e.g., moving the underlying data vs. simply providing an alternate view
of the same data

Tips, tricks, and common mistakes

Q&A

18

Thanks for listening! Feel free to email me with any questions:
johnzhou (at) ucla.edu

